634
Views
23
CrossRef citations to date
0
Altmetric
Articles

Severe motor disability affects functional cortical integration in the context of brain–computer interface (BCI) use

, &
Pages 581-591 | Received 30 May 2011, Accepted 30 Nov 2011, Published online: 21 Mar 2012
 

Abstract

The purpose of this study was to investigate cortical interaction between brain regions in people with and without severe motor disability during brain–computer interface (BCI) operation through coherence analysis. Eighteen subjects, including six patients with cerebral palsy (CP) and three patients with amyotrophic lateral sclerosis (ALS), participated. The results showed (1) the existence of BCI performance difference caused by severe motor disability; (2) different coherence patterns between participants with and without severe motor disability during BCI operation and (3) effects of motor disability on cortical connections varying in the brain regions for the different frequency bands, indicating reduced cortical differentiation and specialisation. Participants with severe neuromuscular impairments, as compared with the able-bodied group, recruited more cortical regions to compensate for the difficulties caused by their motor disability, reflecting a less efficient operating strategy for the BCI task. This study demonstrated that coherence analysis can be applied to examine the ways cortical networks cooperate with each other during BCI tasks.

Practitioner Summary: Few studies have investigated the electrophysiological underpinnings of differences in BCI performance. This study contributes by assessing neuronal synchrony among brain regions. Our findings revealed that severe motor disability causes more cortical areas to be recruited to perform the BCI task, indicating reduced cortical differentiation and specialisation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.