581
Views
11
CrossRef citations to date
0
Altmetric
Articles

The effect of posture category salience on decision times and errors when using observation-based posture assessment methods

, , &
Pages 1548-1558 | Received 23 May 2012, Accepted 29 Aug 2012, Published online: 05 Oct 2012
 

Abstract

Observation-based posture assessment methods (e.g. RULA, 3DMatch) require classification of body postures into categories. This study investigated the effect of improving posture category salience (adding borders, shading and colour to the posture categories) on posture selection error rates and decision times of novice analysts. Ninety university students with normal or corrected normal visual acuity and who were not colourblind, were instructed to select posture categories as quickly and accurately as possible, in five salience conditions (Plain (no border, no shading, no colour); Grey Border; Red Border; Grey Shading (GS) and Red Shading (RS)) for images presented in randomised blocks (240 classifications made by each participant) on a computer interface. Participants responded quickest in the Border conditions, classifying postures about 5% faster than in the Plain condition. Coloured diagrams significantly reduced posture classification errors by approximately 1.5%. Overall, the best performance, based on both error rate and decision time combined, resulted from incorporating a Grey Border to the posture category diagrams; a simple enhancement that could be made to most current observation-based posture assessment tools.

Practitioner Summary: The salience of posture diagrams used in observation-based posture assessment tools was evaluated with respect to analyst error rates and decision times. The best performance resulted from incorporating a grey border to the posture diagrams; a simple enhancement that can be made to most current observation-based posture assessment tools.

Acknowledgements

This project was funded as part of the AUTO21 Network Centres of Excellence, whose funding is provided by the Canadian Federal Government. Dr. Jack P. Callaghan is supported by a Canada Research Chair in Spine Biomechanics and Injury Prevention.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.