777
Views
18
CrossRef citations to date
0
Altmetric
Articles

Kinetic changes in gait during low magnitude military load carriage

, , &
Pages 1917-1927 | Received 15 Mar 2012, Accepted 13 Aug 2013, Published online: 29 Oct 2013
 

Abstract

Indian infantry soldiers carry smaller magnitudes of loads for operational requirements. The ground reaction forces (GRFs) and impulse responses of 10 healthy male Indian infantry soldiers were collected while they walked carrying operational loads between 4.2 and 17.5 kg (6.5–27.2% of mean body weight (BW)) and a control condition of no external load (NL). The GRF and impulse components were normalised for BW, and data for each load condition were compared with NL in each side applying one-way analysis of variance followed by Dunnett's post hoc test. Right foot data were compared with corresponding left foot GRF data for all load conditions and NL. There were significant increases in vertical and anteroposterior GRFs with increase in load. Left and right feet GRF data in corresponding load conditions were significantly different in anteroposterior plane. No significant change was observed in the temporal components of support phase of gait. Changes in impulse parameter were observed in the anteroposterior and vertical planes while carrying load greater than 23 and 16.6% of BW for the right foot and left foot, respectively. Result indicates that smaller magnitudes of loads produced kinetic changes proportional to system weight, similar to heavier loads with the possibility of increased injury risk. Observed smaller asymmetric changes in gait may be considered as postural adjustment due to load. Unique physical characteristics of Indian soldiers and the probable design shortcomings of the existing backpack might have caused significant changes in GRF and peak impulse during smaller load carriage.

Abstract

Practitioner Summary: This study evaluates stress on foot by recording GRF and impulse changes due to small increments of comparatively lighter military loads. Such data should be considered in evaluating the injury risk of feet during the process of optimisation of safer military load carriage and overall improvement in combat performances.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.