548
Views
14
CrossRef citations to date
0
Altmetric
Articles

Tactical combat movements: inter-individual variation in performance due to the effects of load carriage

, , &
Pages 1232-1241 | Received 11 Dec 2014, Accepted 12 Dec 2015, Published online: 28 Mar 2016
 

Abstract

An examination into the effects of carried military equipment on the performance of two tactical combat movement simulations was conducted. Nineteen Airfield Defence Guards performed a break contact (five 30-m sprints) and a fire and movement simulation (16 6-m bounds) in five load conditions (10–30 kg). Heavier loads significantly increased movement duration on the break contact (0.8%/kg load) and fire and movement (1.1%/kg). Performance deterioration was observed from the beginning to the end of the series of movements (bounds or sprints) with deterioration becoming significantly greater in heavier load conditions. Inter-individual variation between slower and faster participants showed a range in load effects; 0.6, 0.8%/kg for fast and 1.0, 1.4%/kg for slow (break contact, fire and movement, respectively). Velocity profiles revealed that the initial acceleration and peak velocity were the primary determinants of performance. As the duration of these tactical combat movements reflects periods of heightened vulnerability, these findings highlight important implications for commanders.

Practitioner Summary: Increasing amounts of carried military equipment impairs the performance of tactical combat movements. Examination of inter-individual variation in velocity profiles identified that the initial acceleration and the peak velocity achieved during sprints and bounds are key determinants of overall performance.

Acknowledgements

The authors would like to acknowledge and thank Mr Jay Yu of the Defence Science and Technology Organisation and Mr Dean Svendsen of Catapult Sports Pty Ltd for their work in developing the software algorithm for data analysis. The authors would also like to thank the staff and airmen of the Royal Australian Air Force who coordinated and participated in this research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.