742
Views
8
CrossRef citations to date
0
Altmetric
Articles

Effect of fatigue on muscle latency, muscle activation and perceived discomfort when exposed to whole-body vibration

, &
Pages 1281-1296 | Received 06 Apr 2020, Accepted 19 Mar 2021, Published online: 30 Apr 2021
 

Abstract

Whole-body vibration and muscle fatigue have both been shown to delay the trunk muscle reflex response and increase trunk muscle activation, leading to an increased risk of low back injuries. However, the effects of whole-body vibration on previously fatigued trunk muscles have never been tested, despite studies showing that prolonged exposure to whole-body vibration can lead to muscle fatigue. The purpose of this research was to investigate the effects of muscle fatigue on muscle latency, muscle activation and perceived discomfort when exposed to whole-body vibration. The results showed that a fatigued muscle state resulted in increased muscle latency, muscle activation and perceived discomfort, which all escalate the risk of low back injuries. Additionally, the ISO 2631-1 comfort ratings did not increase with fatigue, showing a disconnect between these comfort ratings and the perceived discomfort ratings in a fatigued muscle state.

Practitioner summary: When exposed to whole-body vibration, fatigued back muscles result in delayed muscle contraction, higher overall muscle activation and increased perceived discomfort, all of which are known to increase low back injury risk. ISO 2631-1 comfort ratings are unable to increase with fatigue, showing a disconnect with perceived discomfort ratings.

Abbreviations: EMG: electromyography; EO: external oblique; IO: internal oblique; LE: lumbar erector spinae; LEO: left externaloblique; LIO: left internal oblique; LLE: left lumbar erector spinae; LTE: left thoracic erector spinae; MVC: maximum voluntarycontraction; REO: right external oblique; RIO: right internal oblique; RLE: right lumbar erector spinae; RTE: right thoracicerector spinae; SEAT: Seat Effective Amplitude Transmissibility; TE: thoracic erector spinae; WBV: whole body vibration

Disclosure statement

The authors declare that there are no conflicts of interest associated with this publication.

Additional information

Funding

The authors gratefully acknowledge the financial support provided by the Natural Sciences and Engineering Research Council of Canada.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.