228
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Transitions in Morphotropic PMN-PT Single Crystals

, , &
Pages 29-33 | Received 06 Sep 2005, Accepted 31 Oct 2005, Published online: 09 Mar 2011
 

Single crystals in the relaxor-ferroelectric lead magnesium niobate (PMN)-lead titanate (PT) and lead zinc niobate (PZN)-lead titanate (PT) systems provide a significant advantage for detecting and classifying objects in littoral waters. Their extremely large electromechanical coupling factor (k 33 > 0.90) and piezoelectric coefficient (d 33 > 1000 pC/N) offer both broadband and high acoustic source level capabilities. Two different transition pathways can be accessed in a morphotropic PMN-0.30PT composition. Resonance experiments on a length extensional bar fabricated from a multi-domain, [001] oriented and poled PMN- 0.30PT crystal revealed a monotonically decreasing Young's modulus as a function of temperature with a sudden stiffening near 85°C corresponding to a ferroelectric rhombohedral (F R )-ferroelectric tetragonal (F T ) transition. Quasi-static, zero field stress-strain response revealed an elastic instability of the F R near 30 MPa compression. This instability is attributed to a ferroelectric rhombohedral (F R )–ferroelectric orthorhombic (F O ) transition. A dc bias field of 0.59 MV/m stabilized the F R state up to 40 MPa compressive stresses. The implications of these results on sonar projector design and performance will be discussed.

Acknowledgments

We thank the Office of Naval Research for the financial support of this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.