72
Views
4
CrossRef citations to date
0
Altmetric
SECTION A: THEORIES, MODELING, DOMAINS, PHASE TRANSITIONS AND CRITICAL PHENOMENA

Modeling of Ferroelectric Hysteresis Area of Hard Lead Zirconate Titanate Ceramics: Artificial Neural Network Approach

, , &
Pages 233-238 | Received 23 Aug 2009, Published online: 01 Dec 2010
 

Abstract

In this work, the relationship between hysteresis area of hard lead zirconate titanate and external perturbation was modeled using the Artificial Neural Network (ANN). The model developed has the applied electric field parameters and temperature as inputs, and the hysteresis area as an output. Then ANN was trained with experimental data and used to predict hysteresis area of the unseen testing patterns of input. The predicted and the actual data of the testing set were found to agree very well for all considered input parameters. Furthermore, unlike previous power-law investigation where the low-field data had to be discarded in avoiding non-convergence problem, this work can model the data for the whole range with fine accuracy. This therefore suggests the ANN success in modeling hard ferroelectric hysteresis properties and underlines its superior performance upon typical power-law scaling technique.

Acknowledgment

This work is supported by the Thailand Research Fund (TRF) and the Commission on Higher Education (Thailand).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.