406
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Broadband Dielectric Spectroscopy of Ba(Zr,Ti)O3: Dynamics of Relaxors and Diffuse Ferroelectrics

, , , , , , , & show all
Pages 14-25 | Accepted 31 Oct 2013, Published online: 09 Oct 2014
 

Abstract

Broadband dielectric spectroscopy from Hz up to the infrared (IR) range and temperature interval 10-300 K was carried out for xBaZrO3-(1-x)BaTiO3 (BZT-x, x = 0.6, 0.7, 0.8) solid solution ceramics and compared with similar studies for x = 0, 0.2, 0.4, 1 ceramics published recently (Phys. Rev. B 86, 014106 (2012)). Rather complex IR spectra without appreciable mode softening are ascribed to Last-Slater transverse optic (TO) phonon eigenvector mixing and possible two-mode mixed crystal behavior. Fitting of the complete spectral range requires a relaxation in the 100 GHz range for all the samples. Below 1 GHz another relaxation appears, which is thermally activated and obeys the same Arrhenius behavior for all the relaxor BZT samples. The frequently reported Vogel-Fulcher behavior in BZT relaxors is shown to be an artifact of the evaluation from the permittivity or loss vs. temperature dependences instead of its evaluation from loss vs. frequency maxima. The relaxation is assigned to local hopping of the off-centered Ti4+ ions in the frozen BTO clusters, whose size is rather small and cannot grow on cooling. Therefore BZT is to be considered as a dipolar glass rather than relaxor ferroelectric.

Additional information

Funding

This research was supported by the Czech Science Foundation (projects Nos. P204/12/0232 and 13-15110S).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.