105
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Dielectric studies of ferroelectric NH4HSO4 nanoparticles embedded into porous matrices

, , , &
Pages 85-92 | Accepted 20 Apr 2015, Published online: 22 Feb 2016
 

ABSTRACT

Dielectric studies were carried out for the ammonium hydrogen sulphate, NH4HSO4, nanopartiles confined to three different mesoporous silica matrices: opal (photonic crystal), porous glass (mean pore size of 7 nm), and SBA-15 molecular sieves (pore size of 7.5 nm). Measurements were made within a temperature range 100 to 300 K which covers two structural phase transitions bounded the intermediate ferroelectric phase. The temperature of the upper second order phase transition was found not to shift compared to that in bulk. The lower phase transition shifted compared to bulk leading to the expansion of the ferroelectric phase. The transition temperature reduction, diffusion of transitions, and width of the thermal hysteresis differed for different nanocomposites and did not correlate to the pore size. The experimental data were treated within the framework of the models developed for isolated small ferroelectric particles and arrays of coupled particles. The rise of the space charge polarization effects was also observed.

Funding

We acknowledge the financial support from Russian Foundation of Basic Researches, grant 13-07-12416.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.