266
Views
12
CrossRef citations to date
0
Altmetric
Conference Papers

Highly sensitive piezo particulate-polymer foam composites for robotic skin application

, , &
Pages 25-33 | Received 21 Aug 2016, Accepted 12 Dec 2016, Published online: 09 Oct 2017
 

ABSTRACT

Tri-phase PZT-porous polyurethane (PU) composites are investigated with the aim of developing conformable, highly sensitive tactile sensors for application in Human-Machine Interactions. The main goal is to reduce the dielectric constant of the polymer matrix, and improve flexibility of traditional diphase piezo-composites, consisting of ceramic particles in a dense polymeric matrix, by adding a third (gaseous) phase to the system. The presence of the gaseous component in the polymer matrix in the form of well-distributed spherical inclusions effectively decreases the polymer dielectric permittivity, which improves the piezoelectric voltage coefficient of the composites significantly. The unique combination of dielectrophoretic structuring of PZT particles and the addition of a gaseous phase to the polymer resin results in the highest performance of the particulate composite sensors reported in the literature so far. The g33 values of the newly developed triphase composites are twice that of the structured di-phase PZT-dense PU composites (80 mV.m/N) and more than five times the g33 value of bulk PZT ceramics (24-28 mV.m/N).

 :

Funding

This research was carried out under project number M62.3.11438 in the framework of the c (www.m2i.nl).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.