684
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Investigation into surface acoustic wave sensor for DCM gas detection using COMSOL multiphysics

, , &
Pages 94-105 | Received 06 Apr 2020, Accepted 14 Jul 2020, Published online: 09 Mar 2021
 

Abstract

Surface acoustic wave (SAW) gas sensors are simulated and discussed for the detection of the Dichloromethane (DCM) volatile organic gases (VOC) gas. The simulation was performed using Comsol Multiphysics software which is a finite element tool employed for the model analysis. The gas sensor response is investigated employing five different piezoelectric substrates. Among the simulated piezoelectric substrates, LiNbO3 reports the highest resonance frequency of 855.467 MHz, corresponding to a total displacement of 5.08 × 10−4 µm. The effect of sensitive polyisobutylene (PIB) thin sensing layer has been discussed along with optimization of the layer thickness. The ZnO substrate shows the least dependence on the thickness of the PIB sensing layer. Finally, the device is further simulated with the DCM gas concentration which gives corresponding frequency shift under various concentrations in the range from 10 ppm to 250 ppm. The obtained resonance frequency shift showed a linear proportionately to the DCM concentration.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.