242
Views
7
CrossRef citations to date
0
Altmetric
Article

The middle Eocene high-K magmatism in Eastern Iran Magmatic Belt: constraints from U-Pb zircon geochronology and Sr-Nd isotopic ratios

, , , &
Pages 1751-1768 | Received 31 Jul 2019, Accepted 05 Jan 2020, Published online: 28 Jan 2020
 

ABSTRACT

Intrusive rocks are well-exposed in the south Birjand around the Koudakan is herein compared to previously studied outcrops along the middle Eocene to late Oligocene Eastern Iran Magmatic Belt. This pluton is composed mainly of monzonite, quartz-monzonite, and granite with high-K calc-alkaline to shoshonitic affinities. The U-Pb zircon geochronology from monzonite and quartz-monzonite reveals the crystallization ages of 40.96 ± 0.48 to 38.78 ± 0.78 Ma (Bartonian). The monzonite, quartz-monzonite, and granite rocks show similar REEs and trace element patterns, as well as limited variations in εNd(i) and 87Sr/86Sr(i) ratio, suggesting that they are a comagmatic intrusive suite. The chondrite and primitive mantle normalized rare earth and trace element patterns show enrichment in the light rare earth elements, K, Rb, Cs, Pb, Th, and U and depletion in heavy rare earth elements, Nb, Zr, and Ti. The εNd(i) and 87Sr/86Sr(i) values range from +1.32 to +1.68 and 0.7044 to 0.7047, respectively, identical to island-arc basalt composition. The whole-rock Nd model age (TDM) for the intrusive rocks range between 0.69 and 0.73 Ga. These geochemical and isotopic signatures indicate a subduction-related sub-continental lithospheric mantle source for these rocks. Our new geochemical, isotopic, and geochronological studies integrated with previously published data indicate that the middle Eocene to late Oligocene magmatism in eastern Iran was formed in a post-collisional tectonic environment. We suggest the northeastward subduction of the Neo-Tethys ocean beneath the Lut block and the eastward subduction of the Sistan ocean beneath the Afghan block caused mantle wedge to be metasomatized by slab components. At a later stage, a collision between the Lut and Afghan blocks was accompanied by the lithospheric delamination, and the subsequent asthenospheric upwelling led to the melting of the metasomatized sub-continental lithospheric mantle and the generation of middle Eocene to late Oligocene magmatism in the Eastern Iran Magmatic Belt.

Acknowledgments

We thanked Ming Chen, China University of Geoscience, for his patience and persistence in undertaking the U-Pb zircon analyses. The authors are very grateful to reviewers of International Geology Review, Professor Hossein Azizi, Dr. Fatemeh Sepidbar, and Dr. Gültekin Topuz for their fruitful discussions, precise revisions and valuable comments concerning the manuscript. Finally, the authors are greatly indebted to the editors of International Geology Review, Professor Robert J. Stern and Dr. Hadi Shafaii Moghadam for significantly helping in this research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary material

Supplemental data for this article can be accessed here.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.