142
Views
1
CrossRef citations to date
0
Altmetric
Section B

The multistage homotopy analysis method: application to a biochemical reaction model of fractional order

, &
Pages 1030-1040 | Received 26 Dec 2011, Accepted 20 May 2013, Published online: 05 Aug 2013
 

Abstract

In this paper, a new reliable algorithm called the multistage homotopy analysis method (MHAM) based on an adaptation of the standard homotopy analysis method (HAM) is presented to solve a time-fractional enzyme kinetics. This enzyme–substrate reaction is formed by a system of nonlinear ordinary differential equations of fractional order. The new algorithm is only a simple modification of the HAM, in which it is treated as an algorithm in a sequence of small intervals (i.e. time step) for finding accurate approximate solutions to the corresponding systems. Numerical comparisons between the MHAM and the classical fourth-order Runge–Kutta method in the case of integer-order derivatives reveal that the new technique is a promising tool for nonlinear systems of integer and fractional order.

2010 AMS Subject Classifications:

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.