223
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Robust portfolio optimization via solution to the Hamilton–Jacobi–Bellman equation

&
Pages 725-734 | Received 30 Sep 2013, Accepted 29 Nov 2013, Published online: 26 Mar 2014
 

Abstract

We consider a problem of dynamic stochastic portfolio optimization modelled by a fully non-linear Hamilton–Jacobi–Bellman (HJB) equation. Using the Riccati transformation, the HJB equation is transformed to a simpler quasi-linear partial differential equation. An auxiliary quadratic programming problem is obtained, which involves a vector of expected asset returns and a covariance matrix of the returns as input parameters. Since this problem can be sensitive to the input data, we modify the problem from fixed input parameters to worst-case optimization over convex or discrete uncertainty sets both for asset mean returns and their covariance matrix. Qualitative as well as quantitative properties of the value function are analysed along with providing illustrative numerical examples. We show application to robust portfolio optimization for the German DAX30 Index.

2010 AMS Subject Classifications:

Acknowledgements

This research was supported by the project 7FP EU STRIKE-Computational finance, 304617 and VEGA 1/2429/12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.