94
Views
22
CrossRef citations to date
0
Altmetric
Section B

Solving fully fuzzy polynomials using feed-back neural networks

, , &
Pages 742-755 | Received 27 Sep 2013, Accepted 17 Mar 2014, Published online: 22 May 2014
 

Abstract

Recently, there has been a considerable amount of interest and practice in solving many problems of several applied fields by fuzzy polynomials. In this paper, we have designed an artificial fuzzified feed-back neural network. With this design, we are able to find a solution of fully fuzzy polynomial with degree n. This neural network can get a fuzzy vector as an input, and calculates its corresponding fuzzy output. It is clear that the input–output relation for each unit of fuzzy neural network is defined by the extension principle of Zadeh. In this work, a cost function is also defined for the level sets of fuzzy output and fuzzy target. Next a learning algorithm based on the gradient descent method will be defined that can adjust the fuzzy connection weights. Finally, our approach is illustrated by computer simulations on numerical examples. It is worthwhile to mention that application of this method in fluid mechanics has been shown by an example.

2010 AMS Subject Classifications::

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.