111
Views
7
CrossRef citations to date
0
Altmetric
SECTION A

Permutation equivalence of cubic rotation symmetric Boolean functions

Pages 1568-1573 | Received 06 Jan 2014, Accepted 29 Aug 2014, Published online: 08 Oct 2014
 

Abstract

Rotation symmetric Boolean functions have been extensively studied for about 15 years because of their applications in cryptography and coding theory. Until recently little was known about the basic question of when two such functions are affine equivalent. The simplest case of quadratic rotation symmetric functions which are generated by cyclic permutations of the variables in a single monomial was only settled in 2009. For the much more complicated case of cubic rotation symmetric functions generated by a single monomial, the affine equivalence classes under permutations which preserve rotation symmetry were determined in 2011. It was conjectured then that the cubic equivalence classes are the same if all nonsingular affine transformations, not just permutations, are allowed. This conjecture is probably difficult, but here we take a step towards it by proving that the cubic affine equivalence classes found in 2011 are the same if all permutations, not just those preserving rotation symmetry, are allowed. The needed new idea uses the theory of circulant matrices.

2000 AMS subject Classifications:

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.