531
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

A new artificial neural network structure for solving high-order linear fractional differential equations

&
Pages 528-539 | Received 23 Feb 2016, Accepted 02 Feb 2017, Published online: 28 Feb 2017
 

ABSTRACT

Artificial neural networks afford great potential in learning and stability against small perturbations of input data. Using artificial intelligence techniques and modelling tools offers an ever-greater number of practical applications. In the present study, an iterative algorithm, which was based on the combination of a power series method and a neural network approach, was used to approximate a solution for high-order linear and ordinary differential equations. First, a suitable truncated series of the solution functions were substituted into the algorithm's equation. The problem considered here had a solution as a series expansion of an unknown function, and the proper implementation of an appropriate neural architecture led to an estimate of the unknown series coefficients. To prove the applicability of the concept, some illustrative examples were provided to demonstrate the precision and effectiveness of this method. Comparing the proposed methodology with other available traditional techniques showed that the present approach was highly accurate.

2010 AMS SUBJECT CLASSIFICATION:

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.