928
Views
7
CrossRef citations to date
0
Altmetric
Reviews

A numerical solution of Richards equation: a simple method adaptable in parallel computing

, , &
Pages 2-17 | Received 30 Sep 2017, Accepted 25 Jan 2018, Published online: 08 Mar 2018
 

ABSTRACT

Numerical simulation models of water flow in variably saturated soils are important tools in water resource management, assessment of water-related disasters and agriculture. Richards equation is one of the most used models for the fluid flow simulation into porous media. It is a partial differential equation whereby analytical solutions are only possible after applying a number of restrictive assumptions. Therefore, the derivation of efficient numerical schemes for its approximated solution has to be computed by discretization methods. We propose a numerical procedure considering a simplified linearization scheme that makes it adaptable to parallel computing. A comparison in computational performances with three other numerical procedures is detailed for a large computation, including the assessment of the landslide hazard in real areas. We demonstrate the efficiency of the proposed numerical procedure by comparing the results we obtained with a parallel code.

2010 MSC SUBJECT CLASSIFICATIONS:

Acknowledgements

We owe many thanks for providing free of charge the software package MODFLOW and demo version of FEFLOW, respectively.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.