350
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Numerical studies of a class of reaction–diffusion equations with Stefan conditions

, &
Pages 959-979 | Received 09 May 2018, Accepted 30 Dec 2018, Published online: 04 Apr 2019
 

ABSTRACT

It is always very difficult to efficiently and accurately solve a system of differential equations coupled with moving free boundaries, while such a system has been widely applied to describe many physical/biological phenomena such as the dynamics of spreading population. The main purpose of this paper is to introduce efficient numerical methods within a general framework for solving such systems with moving free boundaries. The major numerical challenge is to track the moving free boundaries, especially for high spatial dimensions. To overcome this, a front tracking framework coupled with implicit solver is first introduced for the 2D model with radial symmetry. For the general 2D model, a level set approach is employed to more efficiently treat complicated topological changes. The accuracy and order of convergence for the proposed methods are discussed, and the numerical simulations agree well with theoretical results.

2010 Mathematics Subject Classification:

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Science Foundation [DMS1853365] and the Australian Research Council.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.