131
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Decoupled scaled boundary finite element method for analysing dam–reservoir dynamic interaction

&
Pages 1725-1743 | Received 11 Oct 2018, Accepted 19 Jun 2019, Published online: 21 Aug 2019
 

Abstract

In this study, an efficient method is developed for solving systems of partial differential equations governing seismic analysis of 2D dam reservoir interaction, in the frequency domain. Using Chebyshev higher-order polynomials as mapping function, special shape function, integration method of Clenshaw–Curtis and the integral form used to weighted residual method, coefficient matrices of the system of governing equations become diagonal. This means that the governing partial differential equation for each degree of freedom becomes independent from others. This feature and discretizing only boundaries of domain significantly reduce computational costs in comparison with other methods. In this regard, various problems such as dynamic analysis of empty gravity dam, calculating the hydrodynamic pressure on rigid dam, and dam–reservoir interaction analysis due to the horizontal motion of foundation are examined. Comparing the results of this method with other analytical/numerical methods shows high capability and accuracy of the proposed method.

2010 MATHEMATICS SUBJECT CLASSIFICATIONS:

Acknowledgements

The authors would like to acknowledge and express their special gratitude to anonymous reviewers, for their constructive comments that improved the quality of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.