91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical study of tissue deformation behaviour under impact loading

, , , &
Pages 1439-1453 | Received 22 Nov 2022, Accepted 05 Mar 2023, Published online: 27 Mar 2023
 

Abstract

In this study, the theoretical analysis of tissues behaviour designates a common approach towards the bio-mechanical study, which is used to verify the interpretation of the experimental data along with the compression of different biological tissues. The previous investigations on the KLM (Kuan-Lai-Mow) theory always presented the swelling behaviour without considering the nature of organic fluid flow through the elastic porous medium of the tissues. In fact, isotropic behaviour has been implemented while deriving the power-law model occasionally, but its anisotropic nature still needs to accommodate in the case of power-law fluids. Some general assumptions are often provoked to formulate the complex multiphase deformation behaviour of the solid matrix. If a special kind of complex interconnection is not produced, then deformations produced in these dynamics are important for modelling point of view. To derive such a model, computational cost is the main factor of interest for the researcher. Keeping in view of such a problem, the multiphase deformation of soft tissues is moulded using the power-law model. A diffusion equation is applicable to the undirected swelling behaviour, which has been derived from the solid displacement based on the local fluid pressure. The governing nonlinear coupled system of equations is solved numerically before attaining the consolidation state that is a time-dependent problem, while considering the nonlinear permeability of the tissues. The purpose of the present study is to provide a reasonable direction into the tissues swelling behaviour and its dependence upon the class of organic fluid flow through the lateral boundaries.

Mathematics Subject Classifications:

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

Non-digital data available, however, Matlab Figures, Numerical Algorithm available on the request from the authors.

Additional information

Funding

This work partially supports the author J. I. Siddique by the Simons Foundation [grant number 401993] and Penn State York.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.