41
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Lod generalized trapezoidal formula schemes for parabolic differential equations in two space dimensions

, &
Pages 269-287 | Received 02 May 2000, Published online: 19 Mar 2007
 

Abstract

We describe locally one-dimensional (LOD) time integration schemes for parabolic differential equations in two space dimensions, based on the generalized trapezoidal formulas (GTF(α)). We describe the schemes for the diffusion equation with Dirichlet and Neumann boundary conditions, for nonlinear reaction-diffusion equations, and for the convection-diffusion equation in two space dimensions. The obtained schemes are second order in time and unconditionally stable for all α ∈ [0, 1]. Numerical experiments are given to illustrate the obtained schemes and to compare their performance with the better known LOD Crank-Nicolson scheme. While the LOD Crank-Nicolson scheme can give unwanted oscillations in the computed solution, our present LOD-GTF(α) schemes provide both stable and accurate approximations for the true solution.

*Corresponding author.

*Corresponding author.

Notes

*Corresponding author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.