19
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Space-Time Equations for Non-Unimodular Mappings

&
Pages 555-572 | Published online: 15 Sep 2010
 

The class of systems of uniform recurrence equations (UREs) is closed under uni-modular transformations. As a result, every systolic array described by a unimodular mapping can be specified by a system of space-time UREs, in which the time and space coordinates are made explicit. As non-unimodular mappings are frequently used in systolic designs, this paper presents a method that derives space-time equations for systolic arrays described by non-unimodular mappings. The space-time equations for non-unimodular mappings are known elsewhere as sparse UREs (SUREs) because the domains of their variables are sparse and their data dependences are uniform. Our method is compositional in that space-time SUREs can be further transformed by unimodular and non-unimodular mappings, allowing a straightforward implementation in systems like ALPHA. Specifying a systolic design by space-time equations has two advantages. First, the space-time equations exhibit all useful properties about the design, allowing the design to be formally verified. Second, depending on the application area and performance requirement, the space-time equations can be realised as custom VLSI systems, FPGAs, or programs to be run on a parallel computer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.