356
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Approximations of 2D and 3D generalized Voronoi diagrams

, , &
Pages 1003-1022 | Received 26 Sep 2006, Accepted 03 May 2007, Published online: 04 Mar 2011
 

Abstract

We propose a new approach for computing in an efficient way polygonal approximations of generalized 2D/3D Voronoi diagrams. The method supports distinct site shapes (points, line-segments, curved-arc segments, polygons, spheres, lines, polyhedra, etc.), different distance functions (Euclidean distance, convex distance functions, etc.) and is restricted to diagrams with connected Voronoi regions. The presented approach constructs a tree (a quadtree in 2D/an octree in 3D) which encodes in its nodes and in a compact way all the information required for generating an explicit representation of the boundaries of the Voronoi diagram approximation. Then, by using this hierarchical data structure a reconstruction strategy creates the diagram approximation. We also present the algorithms required for dynamically maintaining under the insertion or deletion of sites the Voronoi diagram approximation. The main features of our approach are its generality, efficiency, robustness and easy implementation.

2000 AMS Subject Classification: :

Acknowledgements

This work was partially supported by project MEC TIN2004-08065-C02-02.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.