59
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A two-level pressure stabilization method for the generalized Stokes problem

Pages 579-585 | Received 27 May 2007, Accepted 10 Jun 2007, Published online: 22 Sep 2010
 

Abstract

Stabilization mixed methods that circumvent the restrictive inf–sup condition without introducing penalty errors have been developed for Stokes equations e.g. by Franca, Hughes and Stenberg in 1993, and Bonvin, Picasso and Stenberg in 2001. These methods consist of modifying the standard Galerkin formulation by adding mesh-dependent terms, which are weighted residuals of the original differential equations. The aim of the stabilization, however, is to select minimal terms that stabilize the approximation without losing the nice conservation properties. Although for properly chosen stabilization parameters these methods are well posed for all velocity–pressure pairs, numerical results reported by several researchers seem to indicate that these methods are sensitive to the choice of the stabilization parameters. A relatively recent stabilized finite-element formulation that seeems less sensitive to the choice of parameters and has better local conservation properties was developed and analysed by Codina and Blasco in 1997, Becker and Braack in 2001, and Nafa in 2004. This method consists of introducing the L2-projection of the pressure gradient as a new unknown of the problem. Hence, a third equation to enforce the projection property is added to the original discrete equations, and a weighted difference of the pressure gradient and its projection are introduced into the continuity equation. In this paper, as done by Nafa in 2006, we analyse the pressure gradient stabilization method for the generalized Stokes problem and investigate its stability and convergence properties.

Acknowledgements

This work was supported by the Sultan Qaboos University, under project IG/SCI/DOMS/07/06.

Additional information

Notes on contributors

Kamel Nafa

Email: [email protected]. Tel: 968-24142309. Fax: 968-24141490.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.