72
Views
7
CrossRef citations to date
0
Altmetric
Section A

A virtual pegging approach to the max–min optimization of the bi-criteria knapsack problem

, &
Pages 779-793 | Received 28 Jan 2007, Accepted 17 Sep 2007, Published online: 23 Apr 2009
 

Abstract

We are concerned with a variation of the knapsack problem, the bi-objective max–min knapsack problem (BKP), where the values of items differ under two possible scenarios. We have given a heuristic algorithm and an exact algorithm to solve this problem. In particular, we introduce a surrogate relaxation to derive upper and lower bounds very quickly, and apply the pegging test to reduce the size of BKP. We also exploit this relaxation to obtain an upper bound in the branch-and-bound algorithm to solve the reduced problem. To further reduce the problem size, we propose a ‘virtual pegging’ algorithm and solve BKP to optimality. As a result, for problems with up to 16,000 items, we obtain a very accurate approximate solution in less than a few seconds. Except for some instances, exact solutions can also be obtained in less than a few minutes on ordinary computers. However, the proposed algorithm is less effective for strongly correlated instances.

2000 AMS Subject Classification :

Acknowledgements

The authors are grateful to anonymous referees for their careful reading of the manuscript and helpful comments.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.