132
Views
4
CrossRef citations to date
0
Altmetric
Section B

Exponentially fitted variants of Newton's method with quadratic and cubic convergence

&
Pages 1603-1611 | Received 26 May 2007, Accepted 28 Dec 2007, Published online: 22 Jul 2009
 

Abstract

In this paper, we present some new families of Newton-type iterative methods, in which f′(x)=0 is permitted at some points. The presented approach of deriving these iterative methods is different. They have well-known geometric interpretation and admit their geometric derivation from an exponential fitted osculating parabola. Cubically convergent methods require the use of the first and second derivatives of the function as Euler's, Halley's, Chebyshev's and other classical methods do. Furthermore, new classes of third-order multipoint iterative methods free from second derivative are derived by semi-discrete modifications of cubically convergent iterative methods. Further, the approach has been extended to solve a system of non-linear equations.

2000 AMS Subject Classification :

Acknowledgements

Authors wish to thank the unknown referees and the subject editor for their valuable suggestions and comments on the manuscript, which led to the improvement of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.