34
Views
1
CrossRef citations to date
0
Altmetric
Section A

An improved implementation and analysis of the Diaz and O'Rourke algorithm for finding the Simpson point of a convex polygon

&
Pages 244-259 | Received 29 Dec 2006, Accepted 23 Jan 2008, Published online: 04 Aug 2009
 

Abstract

This paper focuses on the well-known Diaz and O'Rourke [M. Diaz and J. O'Rourke, Algorithms for computing the center of area of a convex polygon, Visual Comput. 10 (1994), 432–442.] iterative search algorithm to find the Simpson Point of a market, described by a convex polygon. In their paper, they observed that their algorithm did not appear to converge pointwise, and therefore, modified it to do so. We first present an enhancement of their algorithm that improves its time complexity from O(log2ϵ) to O(n log 1/ϵ). This is then followed by a proof of pointwise convergence and derivation of explicit bounds on convergence rates of our algorithm. It is also shown that with an appropriate interpretation, our convergence results extend to all similar iterative search algorithms to find the Simpson Point – a class that includes the original unmodified Diaz–O'Rourke algorithm. Finally, we explore how our algorithm and its convergence guarantees might be modified to find the Simpson Point when the demand distribution is non-uniform.

2000 AMS Subject Classification :

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.