67
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

The ‘unreachable poles’ defect in LQR theory: analysis and remedy

Pages 697-709 | Received 10 Mar 1987, Published online: 18 Jan 2007
 

Abstract

In virtually every application of optimum linear-quadratic regulator (LQR) theory there exists a hidden region of ‘unreachable poles’ (in the left half-plane) which cannot be realized as optimum closed-loop poles. These regions of unreachable closed-loop poles are not visible using the solution procedures ordinarily employed in LQR applications and their lurking presence has (apparently) been overlooked by many professors, textbook writers and industrial users of LQR control theory for the past 25 years. The existence of these regions of unreachable poles represents a serious defect in the LQR method because those regions may (and often do!) contain closed-loop pole patterns which are considered highly desirable by classical control engineering standards, i.e. by ITAE and other classical standards of ‘ideal’ transient response. We first show how one can identify the regions of unreachable poles in an LQR problem. Then, it is shown how one can modify conventional LQR theory to overcome this defect and make all unreachable poles (in the left half-plane) become reachable. By this means, an explicit formula is derived for the LQR state-weighting matrix Q which will automatically produce ITAE or any other arbitrarily prescribed closed-loop pole patterns in the left half-plane.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.