263
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Stability analysis and fail-safe operation of inverters operated in parallel

, , &
Pages 1410-1421 | Received 20 May 2014, Accepted 13 Apr 2015, Published online: 19 May 2015
 

Abstract

In this paper, the stability in the sense of boundedness of inverters operated in parallel is proven and the fail-safe operation is achieved for generic linear or nonlinear loads described in the generalised dissipative Hamiltonian form. The robust droop controller (RDC), recently proposed in the literature for achieving accurate proportional power sharing and tight voltage regulation, is implemented in a nonlinear matrix form to achieve a bounded inverter voltage and inherit a fail-safe capability. Using nonlinear Lyapunov methods, it is proven that the RDC with fail-safe approximates the original RDC, generates a bounded inverter output voltage within the given technical limits and guarantees nonlinear closed-loop system stability in the sense of boundedness. When the prescribed limits are violated, e.g. due to sensor failure, the proposed method rapidly shuts down in a continuous-time manner, thus disconnecting the inverter to prevent a complete system failure even when the protection circuit fails. Extensive simulation results are presented to demonstrate this approach for two single-phase paralleled inverters feeding a linear and a nonlinear load under a sensor failure scenario.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes

1. For details, see Khalil (Citation2001, Section 4.8).

Additional information

Funding

This work was partially supported by the EPSRC, UK [grant number EP/J01558X/1].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.