287
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Feedback linearisation control of an induction machine augmented by single-hidden layer neural networks

, &
Pages 140-155 | Received 05 Jul 2014, Accepted 14 Jun 2015, Published online: 15 Jul 2015
 

Abstract

We consider adaptive output feedback control methodology of highly uncertain nonlinear systems with both parametric uncertainties and unmodelled dynamics. The approach is also applicable to systems of unknown, but bounded dimension. However, the relative degree of the regulated output is assumed to be known. This new control strategy is proposed to address the tracking problem of an induction motor based on a modified field-oriented control method. The obtained controller is then augmented by an online neural network that serves as an approximator for the neglected dynamics and modelling errors. The network weight adaptation rule is derived from the Lyapunov stability analysis, that guarantees boundedness of all the error signals of the closed-loop system. Computer simulations of an output feedback controlled induction machine, augmented via single-hidden-layer neural networks, demonstrate the practical potential of the proposed control algorithm.

Acknowledgements

The authors would like to thank the anonymous reviewers for their comments.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.