134
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A Lagrange duality characterisation for stability under arbitrary switching in switched positive linear systems

Pages 770-782 | Received 24 Mar 2015, Accepted 19 Sep 2015, Published online: 26 Oct 2015
 

ABSTRACT

The present communication is concerned with uniform exponential stability, under arbitrary switching, in discrete-time switched positive linear systems. Lagrange duality is used in order to obtain a new characterisation for uniform exponential stability which is in terms of sets of inequalities involving each of the matrices that represent the modes of the system. These sets of inequalities are shown to generalise the classical linear Lyapunov inequality that characterises, in positive matrices, the property of being Schur. Each solution to these sets of inequalities is shown to provide a representation, in terms of a number of linear functionals, for a common Lyapunov function for the switched positive linear system. A result is further presented which conveys to, a conservative upper bound on the minimum required number of linear functionals (in the above mentioned representation), and also to a method for computing them. Our proof for the aforementioned characterisation is based on another (equivalent) characterisation, in terms of the solvability of a dynamic programming equation associated to the switched positive linear system, which is also reported in the paper. In particular, it is shown that the associated dynamic programming equation has at most one solution. And this solution is shown to be convex, monotonic, positively homogeneous, and it yields a common Lyapunov function for the switched positive linear system.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.