2,469
Views
68
CrossRef citations to date
0
Altmetric
Original Articles

A simple effective heuristic for embedded mixed-integer quadratic programming

, , &
Pages 2-12 | Received 08 Apr 2016, Accepted 02 Apr 2017, Published online: 24 Apr 2017
 

ABSTRACT

In this paper, we propose a fast optimisation algorithm for approximately minimising convex quadratic functions over the intersection of affine and separable constraints (i.e. the Cartesian product of possibly nonconvex real sets). This problem class contains many NP-hard problems such as mixed-integer quadratic programming. Our heuristic is based on a variation of the alternating direction method of multipliers (ADMM), an algorithm for solving convex optimisation problems. We discuss the favourable computational aspects of our algorithm, which allow it to run quickly even on very modest computational platforms such as embedded processors. We give several examples for which an approximate solution should be found very quickly, such as management of a hybrid-electric vehicle drivetrain and control of switched-mode power converters. Our numerical experiments suggest that our method is very effective in finding a feasible point with small objective value; indeed, we see that in many cases, it finds the global solution.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.