479
Views
9
CrossRef citations to date
0
Altmetric
Articles

Designing of robust adaptive passivity-based controller based on reinforcement learning for nonlinear port-Hamiltonian model with disturbance

, , ORCID Icon & ORCID Icon
Pages 1754-1764 | Received 27 Feb 2018, Accepted 19 Sep 2018, Published online: 25 Oct 2018
 

ABSTRACT

The passivity-based control (PBC) is not robust and it relies upon the system model. Moreover, partial differential equations (PDE) are encountered during its designing process which are difficult to be solved and in some cases unfeasible. In this article, reinforcement learning (RL) designs the PBC parameters via solving PDE online. RL and adaptive control are employed in order to make the nonlinear closed-loop system robust against the disturbance and model uncertainty. Through the utilisation of adaptive control technique, the passivity-based controller design along with learning could be executed as though the disturbance within the system could also be eliminated. The simulations and the comparison made with the previous methods manifest the greater advantage and superiority of the proposed method.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.