996
Views
545
CrossRef citations to date
0
Altmetric
Original Articles

Neural networks for nonlinear dynamic system modelling and identification

&
Pages 319-346 | Received 31 Oct 1991, Published online: 27 Mar 2007
 

Abstract

Many real-world systems exhibit complex nonlinear characteristics and cannot be treated satisfactorily using linear systems theory. A neural network which has the ability to learn sophisticated nonlinear relationships provides an ideal means of modelling complicated nonlinear systems. This paper addresses the issues related to the identification of nonlinear discrete-time dynamic systems using neural networks. Three network architectures, namely the multi-layer perceptron, the radial basis function network and the functional-link network, are presented and several learning or identification algorithms are derived. Advantages and disadvantages of these structures are discussed and illustrated using simulated and real data. Particular attention is given to the connections between existing techniques for nonlinear systems identification and some aspects of neural network methodology, and this demonstrates that certain techniques employed in the neural network context have long been developed by the control engineering community.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.