591
Views
235
CrossRef citations to date
0
Altmetric
Original Articles

Iterative learning control using optimal feedback and feedforward actions

, &
Pages 277-293 | Received 15 Mar 1995, Published online: 24 Feb 2007
 

Abstract

An algorithm for iterative learning control is developed on the basis of an optimization principle which has been used previously to derive gradient-type algorithms. The new algorithm has numerous benefits which include realization in terms of Riccati feedback and feedforward components. This realization also has the advantage of implicitly ensuring automatic step size selection and hence guaranteeing convergence without the need for empirical choice of parameters. The algorithm is expressed as a very general norm optimization problem in a Hilbert space setting and hence, in principle, can be used for both continuous and discrete time systems. A basic relationship with almost singular optimal control is outlined. The theoretical results are illustrated by simulation studies which highlight the dependence of the speed of convergence on parameters chosen to represent the norm of the signals appearing in the optimization problem.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.