128
Views
12
CrossRef citations to date
0
Altmetric
Articles

Octagonal DGS based dual polarised ring-shaped antenna for MIMO communications

&
Pages 756-769 | Received 02 Feb 2018, Accepted 18 Nov 2018, Published online: 30 Jan 2019
 

ABSTRACT

In this article, a dual polarised Microstrip patch antenna is proposed for 2*2 MIMO communications. The proposed antenna is suitable for GSM/DCS-1800 and LTE-1900 bands as diversity and multiple-input multiple-output (MIMO) antenna. Different from conventional MIMO antennas, the radiating aperture is shared among the radiators, which greatly reduces the overall size of the MIMO antenna system. An isolation enhancement of 30 dB between the input ports is achieved by integrating cross-connected octagonal shaped Defected Ground Structure to the ground plane. Furthermore, the Multi-antenna system performance metrics such as Envelope Correlation Co-efficient, diversity gain and Mean Effective Gain, and Total Active Reflection Co-efficient are also computed. The Proposed antenna shows a gain of 3.63 dBi at 1950 MHz. The simulated and measured results demonstrate that the proposed antenna has good impedance matching, isolation and dual polarisation characteristics. From the performance metrics, the proposed antenna performs well in multipath environment.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.