81
Views
1
CrossRef citations to date
0
Altmetric
Articles

Efficient recursive least squares parameter estimation algorithm for accurate nanoCMOS variable gain amplifier performances

, , &
Pages 659-682 | Received 19 Mar 2019, Accepted 15 Aug 2019, Published online: 30 Sep 2019
 

ABSTRACT

With the aggressive scaling of integrated circuit technology, parametric estimation is a critical task for designers who looked for solutions to the challenges of some Nanoscale CMOS parameters. This paper presented the prediction of primary parameters of CMOS transistor for 16 nm to 10 nm process nodes using both of Bisquare Weights (BW) method and a novel recursive least squares (RLS) parameter estimation algorithm. The proposed RLS algorithm consists of the minimisation of a quadratic criterion relating to the prediction error in order to attain the best estimated parameters of the developed mathematical model. The obtained results thanks to the proposed RLS algorithm were better than those reached using the BW method. Comparisons between Predictive Technology Model (PTM) data and parameters estimated with RLS algorithm were made to check the validity and the consistency of the proposed algorithm. These predicted primary parameters were helpful to estimate and to optimise the performances of the Variable Gain Amplifier (VGA) which was a basic circuit element with a key role in the design of new upcoming receivers.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.