307
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Design and analysis of a proposed transformerless/non-isolated high-‎gain DC-DC converter for renewable energy applications

ORCID Icon, , &
 

ABSTRACT

This paper proposes a transformerless/non-isolated, high-gain DC-DC converter required to increase low voltages in renewable energy applications. The converter topology uses only a single-switch with minimum voltage stress over the semiconductors. The design is obtained by integrating both the boost and the quadratic boost converter topology. Operating principles of the converter circuit topology are detailed, and the steady-state performance is analysed. The design results in lower switching voltage that significantly improves the efficiency of the controlled switches. The results obtained by computer simulation demonstrate that the high voltage gain is obtained at lower values of duty ratio with an efficiency of more than 94%. The merits of the proposed converter are given in comparison with other high-gain DC-DC converters. Finally, a laboratory model is built using the digital signal processor [dSPACE (DS-1104)] to verify the converter theory. The theoretical, simulation and experimental results that indicate the claimed converter performance and capability are given.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.