183
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance analysis of concatenated BCH and convolutional coded OFDM system

, & ORCID Icon
Pages 1574-1587 | Received 21 Jun 2019, Accepted 02 Feb 2020, Published online: 16 Feb 2020
 

ABSTRACT

Orthogonal Frequency Division Multiplexing (OFDM) is a widely used technique for wireless communications. But uncoded OFDM is not sufficient by itself, that is why channel coding is included to increase the system performance. In this study, concatenated Bose Chaudhuri Hocquenghem (BCH) and Convolutional Coded (CC) OFDM system is investigated for multipath fading channel with Additive White Gaussian Noise (AWGN). The simulation results show that the proposed concatenated code needs lower Signal-to-Noise Ratio (SNR) when compared with single BCH code, single convolutional code and even with other concatenated systems. Throughout the simulations BCH coding is performed with 128, 256, 512 Fast Fourier Transform (FFT) lengths; whereas convolutional coding is performed with 1/2, 1/3 coding rates. Furthermore, interleavers are added to the system to prevent the burst errors that occur over the channel. With the proposed system, the best result is obtained by using BCH(511,340) and CC(3,1,7) concatenation which is 8.2 dB SNR value for 10−3 Bit Error Rate (BER). This result is very close to ideal AWGN channel value, which is 8 dB for 10−3 BER.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.