195
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Sector Scanning Algorithm (SSA) for device discovery in D2D communication

ORCID Icon, ORCID Icon & ORCID Icon
Pages 45-66 | Received 16 Nov 2019, Accepted 05 Apr 2020, Published online: 29 May 2020
 

ABSTRACT

A device-to-device (D2D) communication permits wireless devices to communicate mutually without network assistance. It promises to enhancement in spectral and network efficiency in the next-generation networks. A D2D communication needs device discovery, which is considered as a primary task. It represents the geographic coordinates of the wireless devices in a cellular network. If the device discovery is not legitimated properly may present noteworthy latency, energy consumption, and inaccuracy. In this work, a novel device discovery procedure based on cell sector scanning algorithm (SSA) is proposed for in-band D2D communication and the device discovery is performed under two scenarios: haphazard walk and velocity. An experimental setup is established to receive signal strength (RSS) measurements in a specific sector. The coverage area is divided into eight sectors to discover the devices. The sectors are used to apply and verify the proposed solution and the algorithm for device discovery. It considers the existing radio resources for proximal device discovery and adjusts the discovery signal transmission appropriately. The discovery algorithm must be fast, accurate, and energy efficient at the device level and network level. This technique performs well and enhances the quality of discovery process more than 20% of the linear estimation and diminishes the energy consumption by 24% to accomplish the discovery in dense areas and makes it dynamic and adjustable for changing environments. A mathematical analysis based on the sector scanning attempts is also provided. Furthermore, the improved discovery scheme is evaluated and confirmed by the probability of isolation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors would like to express their gratitude to the Ministry of Higher Education (MOHE) in Malaysia and Universiti Teknologi Malaysia (UTM) for providing the financial support for this research through the HICoe Research Grant Scheme (R. J130000.7851.4J412). The Grant is managed by Research Management Centre (RMC) at UTM.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.