258
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

High-performance and low-energy approximate full adder design for error-resilient image processing

, , &
Pages 1059-1079 | Received 30 Mar 2021, Accepted 02 Aug 2021, Published online: 31 Aug 2021
 

ABSTRACT

Full Adder cell is the main building block of larger arithmetic circuits and often is placed along their critical path. Therefore, it is a vital task to design high-performance and low-energy Full Adder cells. In this paper, a novel inexact Full Adder cell is proposed based on carbon nanotube field-effect transistor (CNFET) technology. Comprehensive simulations are carried out at the transistor level by the HSPICE simulator applying the 32 nm Stanford library model. The operation of the proposed cell is investigated with different supply voltages, output loads, ambient temperatures, and operating frequencies. At the application level, the proposed cell is applied to the image blending system by MATLAB software. Simulation results confirm that the proposed cell outperforms its counterparts in terms of both transistor and application-level metrics such as delay, power-delay product (PDP), energy-delay product (EDP), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) index.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.