319
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Dual-model predictive control of two independent induction motors driven by a SiC nine-switch inverter

ORCID Icon & ORCID Icon
Pages 124-142 | Received 30 Jul 2021, Accepted 14 Nov 2021, Published online: 30 Dec 2021
 

ABSTRACT

This paper presents a finite control set model predictive control (FCS-MPC) approach for two induction machines driven by a nine-switch inverter (NSI). In the traditional approach, two separate voltage source inverters are necessary to drive the independent induction motors. In the proposed method, the nine-switch inverter is used to control the separate motors with a reduced number of switching devices compared to traditional method. A robust control strategy that eliminates the interactions between separate mechanical loads is required to achieve a proper independent speed and torque control for two induction machines through the NSI. To ensure the reliability of the machine operation, the indirect-field oriented control-based model predictive control strategy is proposed. The proposed control strategy is experimentally validated across the 3.2 kW SiC-based NSI prototype. The control algorithm is performed on an Altera Cyclone IV Field-programmable gate array. The experimental results demonstrate that the proposed dual-model predictive control method provides a good and robust motor control operation under different loading conditions. Two induction motors are successfully controlled, and the independent speed and torque control are achieved.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the The Scientific and Technology Research Council of Turkey (TUBITAK) [117E769].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.