40
Views
1
CrossRef citations to date
0
Altmetric
Original

INCONGRUENT RESTORATION OF INHIBITORY TRANSMISSION AND GENERAL METABOLIC ACTIVITY DURING REORGANIZATION OF SOMATOSENSORY CORTEX

&
Pages 1003-1015 | Received 24 Aug 2004, Published online: 07 Jul 2009
 

Abstract

Activity markers cytochrome oxidase (CO) and glutamic acid decarboxylase (GAD) were analyzed in the primary somatosensory cortex of raccoons that underwent digit amputation. Subjects recovered for 2, 15, and 23 weeks following amputation of the fourth forepaw digit. Histochemistry was used to assess relative activity levels of both enzymes. We found a pronounced decrease in the numbers of CO intense patches in the cortical gyrus that had lost its original sensory input from the fourth digit. This decrease in CO activity was still apparent 15 weeks post-amputation. Conversely, no clear decrease in GAD levels could be identified in connection with the amputation procedure.

Our findings present evidence that a significant decrease in metabolic activity results from the loss of the primary afferent sensory drive. The remaining GAD activity suggests that the absence of electrical activity, characteristic of reorganizing cortex, is likely to depend in part on lateral inhibitory cortical connections.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.