381
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

MFG-E8 alleviates oxygen-glucose deprivation-induced neuronal cell apoptosis by STAT3 regulating the selective polarization of microglia

& ORCID Icon
Pages 15-24 | Received 02 Sep 2019, Accepted 05 Feb 2020, Published online: 12 Mar 2020
 

Abstract

Background: Ischemic stroke is a complex pathological process, involving inflammatory reaction, energy metabolism disorder, free radical injury, cell apoptosis and other aspects. Accumulating evidences have revealed that MFG-E8 had a protective effect on multiple organ injuries. However, the comprehensive function and mechanism of MFG-E8 in ischemic brain remain largely unclear.

Methods: BV-2 cells were treated with recombinant murine MFG-E8 (rmMFG-E8) or/and Colivelin TFA after exposing for 4 h with oxygen glucose deprivation (OGD). Cell viability and apoptosis were assessed by MTT assay and Flow cytometry. RT-qPCR and Western blot assays were applied to examine the expression levels of MFG-E8, apoptosis-related proteins and M1/M2 polarization markers.

Results: Our results demonstrated that OGD significantly inhibited microglial viability and facilitated apoptosis. In addition, we found that OGD downregulated MFG-E8 expression, and MFG-E8 inhibited OGD-induced microglial apoptosis and promoted microglial M2 polarization. In terms of mechanism, we proved that MFG-E8 regulated OGD-induced microglial M1/M2 polarization by inhibiting p-STAT3 and SOCS3 expressions, which was reversed by STAT3 activator (Colivelin TFA). Finally, we verified MFG-E8 alleviated OGD-induced neuronal cell apoptosis by M2 polarization of BV-2 cells.

Conclusions: We demonstrated that MFG-E8 reduced neuronal cell apoptosis by enhancing activation of microglia via STAT3 signaling. Therefore, we suggested that MFG-E8 might provide a novel mechanism for ischemic stroke.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

Additional information

Funding

This work was supported by Natural Science Foundation of Guangdong Province (2016A030313314), Medical Scientific Research Foundation of Guangdong Province (201711385910393) and Guangdong Medical Science and Technology Research Fund (B2018105).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.