265
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Inhibition of Nrf2 might enhance the anti-tumor effect of temozolomide in glioma cells via inhibition of Ras/Raf/MEK signaling pathway

, , , &
Pages 975-983 | Received 21 Jul 2019, Accepted 27 Apr 2020, Published online: 26 May 2020
 

Abstract

Background

Glioblastoma (GBM) is the most common aggressive primary cancer occurring in the brain tissue. GBM accounts 16% of primary brain tumors and half of gliomas. Additionally, the incidence of GBM is increases with aging, and reaches the peak at the age of 75 to 84 years. The survival of patients with GBM remains at a low level, only less than 5% patients diagnosed with GBM survive for 5 years. Temozolomide (TMZ) is a DNA alkylating agent and is currently a first line chemotherapeutic treatment for GBM. TMZ combined with radiation therapy has been shown to prolong the overall survival (OS) to 14.6 months compared with 12.1 months for radiation therapy alone. NF-E2-related factor 2 (Nrf2) is a transcription factor that contains seven functional domains. The binding of Keap1 to Nrf2 is a central regulator of the cellular defense mechanism against environmental stresses.

Methods

First, Nrf2 overexpression and inhibition models were constructed in U251 cells using transfection. The percentage of viable cells was detected using the MTT assay. Then, the expression of the HO-1 regulator was detected using qPCR, and the concentrations of oxidative stress related factors were detected using ELISAs. The levels of proteins related to oxidative stress and the Ras/Raf/MEK signaling pathway was detected using western blotting analysis.

Results

We initially established Nrf2 inhibition and activation cell models in U251 cells and found that the inhibition of Nrf2 expression decreased the mRNA and protein levels of the anti-oxidative enzymes, as well as the secretion of these enzymes into the cellular microenvironment. These effects might be mediated by the inhibition of Ras/Raf/MEK signaling pathway, leading to the inhibition of cellular proliferation.

Conclusions

Inhibition of Nrf2 expression might enhance the effect of TMZ on the treatment of GBM and might be a new therapeutic strategy.

Availability of data and materials

Data and materials were acquired from the corresponding author upon reasonable requirement.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Authors’ contributions

Wei Sun and Weihua Zhang performed the experiment. Jianyong Yu analyzed the data. Zhihui Lu and Jianhua Yu designed the experiment and wrote the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.