49
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Deadlock avoidance for manufacturing multipart re-entrant flow lines using a matrix-based discrete event controller

Pages 3139-3166 | Published online: 14 Nov 2010
 

A deadlock avoidance supervisory controller for Discrete Event (DE) Systems is implemented. The DE controller uses a novel rule-based matrix dispatching formulation (US patent received). This matrix formulation makes it easy to write down the DE controller from standard manufacturing tools such as the bill of materials or the assembly tree. It is shown that the DE controller's matrix form equations plus the Petri Net (PN) marking transition equation provide a complete dynamical description of DE systems. We provide circular wait analysis (CW) for deadlock-free dispatching rules for Multipart Re-entrant Flow line (MRF) regular systems, and provide a regularity test for these systems in PN and matrix notations. We analyse the so-called critical siphons, and certain critical subsystems to develop a DE controller that guaranties deadlock-free dispatching by limiting the work-in-progress in the critical subsystems associated with each CW. This least-restrictive dispatching policy avoids deadlock. The deadlockfree dispatching rules are implemented by the DE controller on a three-robot, two-machine re-entrant flow line, the Intelligent Material Handling cell at the Automation and Robotics Research Institute of UTA. Technical information given includes the development of the deadlock-free controller in LabVIEW.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.