94
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

High performance loading robot design for a tool-delivery system

Pages 3401-3424 | Published online: 14 Nov 2010
 

A concept of an ultrafast distributed material transfer system based upon linear induction motors (LIM) has been proposed in which vehicles can travel at velocities of up to 120 km/h. Performance and economic analysis of a high-speed tool-delivery system based on such a system has shown that the robot manipulator that loads and unloads the vehicles is the bottleneck. This paper presents a method to design a high-speed robot with cycle times comparable with the LIM material transfer system. A generic design methodology is developed for robot manipulators that integrates several key design issues such as kinematics, dynamics, structural mechanics, actuator sizing, assessing robustness to parameters and sensor errors, and vibration analysis. The methodology is computationally efficient and has been implemented using MATLAB for evaluating a number of 'rough-cut' feasible designs for the high-speed robot. A highly distributed architecture and distributed protocols are proposed for integrating the high-speed robot and the high-speed material transfer system.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.