227
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Tolerance-based process plan evaluation using Monte Carlo simulation

, &
Pages 4871-4891 | Received 01 Jun 2004, Published online: 22 Feb 2007
 

Abstract

In the discrete part manufacturing industry, engineers develop process plans by selecting appropriate machining processes and production equipment to ensure the quality of finished components. The decisions in process planning are usually made based on personal experience and the verification of process plans is based on physical trial-and-error runs, which is costly and time-consuming. This paper proposes to verify process plans by predicting machining tolerances via Monte Carlo simulation. The basic idea is to use a set of discrete sample points to represent workpiece geometry. The changes of their spatial position are simulated and tracked as the workpiece undergoes a series of machining processes. Virtual inspections are then conducted to determine the dimensional and geometric tolerances of the machined component. Machining tolerance prediction is completed through: (1) manufacturing error synthesis, and (2) error propagation in multiple operations. In this way, engineers can quickly screen alternative process plans, spot the root error causes, and improve their decisions. Therefore, physical trial-and-error runs can be reduced, if not eliminated, resulting in significant savings in both time and costs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.