179
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Parallel algorithm for setting WIP levels for multi-product CONWIP systems

&
Pages 4681-4693 | Received 01 Nov 2005, Published online: 22 Feb 2007
 

Abstract

Reducing work-in-process (WIP) inventory is continuing to be an important business need because of several factors including the need to reduce working capital. Numerous techniques have been suggested for WIP reduction, and CONWIP is a competitive algorithm for WIP reduction. Prior CONWIP algorithms have been primarily sequential algorithms and can be potentially incur significant computing time, especially when dealing with inventories for multiple products. The paper proposes a card-setting algorithm for multiple product types subject to routing and throughput requirements. The proposed algorithm searches the WIP space iteratively and the step-size is adaptively selected based on the known properties of multi-chain, multi-class, closed queuing networks. Furthermore, parallelization of this search algorithm across multiple processors is proposed where each processor searches a different segment of the WIP space while adaptively adjusting its step size for all product types to ensure fast convergence. The proposed parallel algorithm can take advantage of distributed computing architectures to speed-up the overall computation. An experimental implementation of the parallel algorithm using Message Passing Interface (MPI) over a high-speed network is described. Computational results demonstrate that the proposed parallel algorithm can be parallelized over eight to ten processors to obtain a speed-up of three to five.

Acknowledgements

Work was partially supported by National Science Foundation Grants DMI-9908267 and DMI-0075572, and a Ben Franklin Technology Partnership through a Center of Excellence grant to Center for Manufacturing Enterprise Integration.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.